Code: CS4T5

II B.Tech - II Semester-Regular / Supplementary Examinations April 2019

COMPUTER ORGANIZATION (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks $11 \ge 22$ M

1.

- a) What is the function of a T flip-flop?
- b) What are called don't care conditions?
- c) State the significance of PSW (Program Status Word).
- d) How effective address is computed in indexed addressing mode?
- e) What is a priority interrupt?
- f) Define an interface.
- g) Briefly explain about write-through cache update mechanism.
- h) Mention different types of semiconductor memories
- i) What is a hardware lock mechanism?
- j) What is a semaphore?
- k) Define virtual memory concept.

PART – B

Answer any <i>THREE</i> questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$	
2. a) Explain the flip-flop excitation tables for JK flip-flop.	0.14
 b) Simplify the following expression in product-of-sums form. x'z'+y'z'+yz'+xy. 	8 M 8 M
3. a) Explain the operation of a memory stack.	8 M
b) Illustrate the instruction formats.	8 M
4. a) Explain about strobe control method of Asynchronous transfer.	Data 8 M
b) How polling is used for establishing the priority of simultaneous interrupts.	8 M
5. a) Explain about the mapping procedures adopted in the organization of cache memory.	8 M
b) Discuss about LRU and FIFO page replacement algorithms.	8 M

Page 2 of 3

- 6. a) Explain about inter process synchronization. 8 M
 - b) Discuss few bus arbitration procedures that use dynamic algorithms.
 8 M